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SUMMARY 
 
Among the challenges of performance-based earthquake engineering is estimation of the demand on a 
structure from a given earthquake. This is often done by calculating an “Intensity Measure” (IM) for a 
given earthquake ground motion, and then computing the probability that the earthquake will cause a 
given level of demand in the structure as a function of this IM. Traditional IMs include peak ground 
acceleration and spectral acceleration at the first-mode period of vibration. These IMs consist of a single 
parameter. In this paper, IMs consisting of two parameters are proposed: spectral acceleration at the first-
mode period of vibration along with a measure of spectral shape (the ratio of spectral acceleration at a 
second period to the original spectral acceleration value). A method for predicting the probability 
distribution of demand using a vector IM is presented. This method accounts for the effect of collapses on 
the distribution of demand. Two complimentary methods for determining the optimum second period at a 
given intensity level are described, and an improvement in the accuracy of demand predictions is shown. 
 

INTRODUCTION 
 
In this paper we present a method for determining an optimal vector “Intensity Measure” for predicting 
the demand in a structure. The demand on a structure can be defined as a measure of the structural 
response (e.g. the maximum inter-story drift angle seen in the structure). To predict this response 
effectively, one needs an Intensity Measure (IM) for the given earthquake. In the past, the Peak Ground 
Acceleration (PGA) of the earthquake was commonly used as an IM. More recently, spectral response 
values (i.e. spectral acceleration at the first-mode period of vibration – Sa(T1)) have been used as IMs. 
These IMs are generally a single parameter. In this paper, we propose intensity measures containing two 
parameters. These intensity measures are called “Vector IMs,” as opposed to the “Scalar IMs” that contain 
only a single parameter. One would expect that a Vector IM would contain more information about the 
ground motion than a Scalar IM, and would thus be more effective at predicting the response of a 
structure. This will be shown, and criteria for finding an optimal set of two parameters will be described.  
 
An example of the need for prediction of structural response is seen in the work of the Pacific Earthquake 
Engineering Research (PEER) Center (Cornell [1]). Here, the response of a structure is termed an 
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Engineering Demand Parameter, or EDP. The annual frequency of exceeding a given EDP is calculated 
as follows: 
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Where λEDP(z) is the annual frequency of exceeding a given EDP value z, λIM(xi) is the annual frequency 
of exceeding a given IM value xi (this is commonly referred to as a ground motion hazard curve), and 
∆λIM(xi) = λIM(xi) - λIM(xi+1) is approximately the annual frequency of  IM = xi. The final element of this 
equation is P(EDP>z|IM=xi), the probability of exceeding a specified EDP level,  given a level of IM. 
This is the value that we are interested in estimating efficiently using a vector IM. If the IM becomes a 
vector, Equation 1 must be generalized, as will be discussed below. 
 
In this paper, we will consider only a specific class of candidates as potential vector IMs. Given that 
Sa(T1) has been verified as an effective predictor of structural response for a wide class of structures, we 
will always use this as the first element of our vector. For the second element of our vector, we will 
consider the predictor RT1,T2 = Sa(T2)/ Sa(T1) (see Figure 1 for an illustration). The predictor RT1,T2 is a 
measure of spectral shape. Together the vector Sa(T1) and RT1,T2 define two points on the spectrum of an 
accelerogram. We will keep T1 equal to the first-mode period of vibration of the building, but we will let 
T2 vary, and choose the value that optimally predicts the response of the structure. (At an early stage in 
this research, a range of T1 values was examined, but other values did not show any significant 
improvement when compared with the first-mode period of the structure.) The spectral shape predictor 
RT1,T2 has been found by others to be a useful predictor of structural response (e.g. Cordova [2] and 
Vamvatsikos [3]). In this study, we will limit the size of the vector to two elements, although the same 
procedure is easily applicable to vectors of a larger size. This study also considers only maximum 
interstory drift (referred to as θmax) as an EDP, although an identical study could be performed on any 
other EDP value.  
 

 
Figure 1: Illustration of the calculation of RT1,T2 using a response spectrum. 
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PREDICTION OF BUILDING RESPONSE USING A SCALAR IM 

 
The prediction of building response requires estimation of the term P(EDP>z|IM=xi) in Equation 1. This 
is true for both the scalar and vector IM cases. In this section, an estimation method is presented for the 
scalar IM case, and in the next section it is modified for use with vector IMs. The scalar IM Sa(T1) is used 
in this section, both because of its wide use elsewhere, and because it will be easily generalized to our 
vector case, IM = {Sa(T1), RT1,T2}. 
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The method used in this paper requires a suite of earthquake of records, all at the same IM value, Sa(T1)=x 
(e.g., in this study, 40 records are used at each IM level). We scale a suite of historical earthquake records 
to the given  Sa(T1) value (e.g. Shome [4]). (We use the same suite of records for different Sa(T1) levels, 
although one could use different record suites at different levels if PSHA disaggregation suggested that, 
for example, the representative magnitude level was changing.) This suite of records is used to perform 
Nonlinear Dynamic Analysis (NDA) on a model of the structure. Now we have n records, all with IM = x, 
and n corresponding values of EDP (see an illustration in Figure 2). If we had a perfect IM, then all 
records with IM = x would have an identical value of EDP. However, with our less-than-perfect IMs, 
there will be a distribution of EDP’s. So in fact, EDP given IM = x is a random variable with an unknown 
distribution, and our n values of EDP are a sample from this distribution. We then need to estimate this 
distribution in order to calculate the probability that EDP is greater than a given value. Our EDP, 
maximum interstory drift, has been found to be well represented by a lognormal distribution (e.g. Shome 
[5], Aslani [6]). Because of this we work with the natural logarithm of EDP, which then has the normal 
distribution. We can estimate the parameters for this normal distribution using the method of moments 
(Benjamin [7]). For each IM level, estimate the mean of lnEDP as the sample average of the lnEDPs, and 
denote this ln |ˆ EDP IM xµ = . Estimate the standard deviation of lnEDP, which we call the “dispersion” and 

denote , as equal to the sample standard deviation. These two parameters fully define the 
normal distribution. The probability that EDP exceeds z given IM = x can now be calculated using the 
Gaussian Complimentary Cumulative Distribution Function: 
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where   denotes the standard normal distribution. ( )Φ i
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Figure 2: Forty records scaled to Sa(T1) = 0.4g, and a superimposed lognormal probability 

distribution function, generated using the method of moments. 
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Accounting for Collapses 
In the previous section, it was stated that EDP given IM = x has a lognormal distribution. While this may 
be a valid assumption at lower ground motion levels, it does not explicitly account for the possibility that 
some records may result in a collapse of the structure at higher levels of IM. For these records, we would 
say that EDPi is greater than z for any value of z (or equivalently, iEDP = ∞ ). This causes two problems: 



the probability that  is zero in the lognormal distribution, and collapses cause our estimates of 
the lognormal mean and standard deviation to be infinite. To address this issue, we need to make a 
modification to our procedure. First, we separate our realizations of EDP into collapsed and non-
collapsed data. We then estimate the probability of collapse at the given IM level as: 

iEDP = ∞

 
number of records collapsed( | )P C IM x

n
= =  (3) 

We then use the method of moments to estimate ln |EDP IM xµ =  and ln |EDP IM xβ =  using only the non-collapsed 
records. Combining the two possibilities, our estimate of the probability that EDP exceeds z given IM = x 
is now: 
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We can now proceed with this estimate.  
 

PREDICTION OF BUILDING RESPONSE USING A VECTOR IM 
 
We now adapt the procedure of the preceding section for use with a vector IM. If we label the two 
elements of our vector IM as IM1 = Sa(T1) and IM2 = RT1,T2, then we are trying to estimate 

. Ideally, we would like to scale our records to both IM1 1 2 2( | ,P EDP z IM x IM x> = = ) 1 = x1 and IM2 = x2. 
However, when we scale our record by a factor y, each spectral acceleration value is changed by the same 
factor y. Therefore, RT1,T2 = Sa(T2)/ Sa(T1) is unchanged by scaling. (In general, because there is only one 
factor that we are scaling by—a uniform scale factor on the entire record—we cannot match two IMs 
simultaneously, even if we consider other classes of IM2 than RT1,T2.) So we need a supplement to scaling.  
 
The solution we adopt is to scale on IM1 (Sa(T1)) as before, and then apply regression analysis to estimate 
EDP versus IM2 (RT1,T2) for each IM1 level (Neter [8]). In the Results section of this paper, we will explain 
the reasoning behind scaling to IM1, rather than using regression analysis on both variables. Our approach 
will parallel the scalar IM case, in that we separate out the collapsing records first, and then deal with the 
remaining non-collapsed records. 
 
Accounting for Collapses with the Vector IM 
As with the scalar IM, there is a possibility that some records may cause collapse of the structure. 
However, instead of taking the probability of collapse to be simply the fraction of records that collapse, 
we would like to take advantage of our vector IM to predict the probability of collapse more accurately. 
We do this using logistic regression, which is commonly used to generate predictions for binary data 
(Neter [8]). Each record has a value of RT1,T2, which we denote more simply as Ri and use as our predictor 
variable. We then build an indicator variable for collapse (call this Yi and set it to 1 if the record causes 
collapse and 0 otherwise). We then use the logit transform to predict collapse: 
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where 0  and 1β β  are parameters to be estimated using our set of data points {Yi, Ri}. Logistic regression 
is available as a built-in function in many mathematical and statistical software packages. We then use 
this function (and our estimated parameters) to predict the probability of collapse, given Sa(T1) and RT1,T2: 
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where 0
ˆ  and 1̂β β  are used to denote the estimates of 0 and 1β β  obtained from regression on a dataset 

that has been scaled to Sa(T1) = x1 (i.e. 0
ˆ and 1̂β β   will be different for different values of Sa(T1)). We 

now have a probability of collapse prediction that varies with RT1,T2, rather than being constant as in the 
scalar case. An example of this data and a fitted logistic regression curve is presented in Figure 3.  
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Figure 3: An example of prediction of the probability of collapse using logistic regression applied to 

binary collapse/non-collapse results (Sa(T1) = 0.9g). 
 
Accounting for Non-Collapses with the Vector IM 
Once the probability of collapse has been estimated, it is necessary to quantify the behavior of the non-
collapse records. We now separate out the non-collapsed records. Note that each of these records has been 
scaled to Sa(T1) = x1. Each of the records has a value of RT1,T2, which we again refer to as Ri, and it has a 
value of EDP, which we refer to as EDPi. We have found that there tends to be a relationship between 
RT1,T2 and EDP of the form 1 1,| ( ), ( )b

a TEDP S T NC a R 2T ε≈ � , where a and b are constant coefficients, 
and ε�  is a random variable representing the randomness in the relationship. This becomes a linear 
relationship after we take logarithms of both sides: 1 1ln | ( ), ln lna TEDP S T NC a b R , 2T ε≈ + +  (we have 
defined a new random variable, lnε ε= � ). So we now use linear least-squares regression (Neter [8]) to 
estimate the our two regression coefficients, 2 ln aβ =  and 3 bβ = : 
 2 3ln lniEDP Ri iβ β ε= + +  (7) 
Linear regression is available in many mathematical and statistical software packages, and can be used to 
obtain estimates of the coefficients, 2β̂  and 3β̂  (again, these values will vary for different Sa(T1) levels). 
A graphical example of this data and the regression fit is shown in Figure 4. 
 
When using linear least-squares regression on a dataset, several assumptions are implicitly made, and the 
accuracy of the results depends on the validity of these assumptions. If we denote our predicted value of 

for record i as , then the prediction error for this record is called the “residual” from 
record i: 
ln EDP ˆln iEDP

  (8) ˆln lni iEDP EDPε = − i



These residuals are assumed to be mutually independent. In addition, when estimating the distribution of 
lnEDP below, we will assume the residuals to be normally distributed with constant variance (this 
condition is termed homoscedasticity).  The assumptions of independent normal residuals with constant 
variance have been examined for the data in this study, and found to be reasonable. An estimate of the 
variance of the residuals is also available from the analysis software, and we will denote it 2ˆ ˆ[ ]Var εε σ≡ . 
This variance in the residuals is displayed graphically in Figure 4, by superimposing the estimated normal 
distribution of the residuals over the data. 

 
Figure 4: An example of non-collapse data, and a fit to the data using linear regression. The data 
comes from records scaled to Sa(T1) = 0.3g. The estimated distribution of the residuals has been 

superimposed over the data.  
 
From regression, we now know that given Sa(T1) = x1 and RT1,T2 = x2, and given no collapse, the mean 
value of  is: ln EDP
 2 3

ˆ ˆln ln 2EDP xβ β= +  (9) 

where  2β̂  and 3β̂  have been obtained by regressing on records scaled to Sa(T1) = x1. We also know that 

ln EDP  is normally distributed, and that it has a variance equal to the 2ˆεσ . So the probability that 
ln EDP  is greater than z, given Sa(T1) = x1, RT1,T2 = x2, and no collapse can be expressed: 
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This equation is very similar to Equation 2 used in the scalar case. We previously estimated the mean of 
the normal distribution by the average response of all records, but now we use a result from regression on 
RT1,T2. We have also replaced the standard deviation of the records by the standard deviation of the 
regression residual. But otherwise, the equation is the same. 
 
We can combine Equations 6 and 10 to compute the probability that EDP exceeds z: 
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Although 1x  does not appear in Equation 11, our estimate is implicitly a function of x1, because the data 

used to estimate 0 1 2 3
ˆ ˆ ˆ ˆ ˆ, , ,  and εβ β β β σ  all comes from records scaled to Sa(T1) = x1. This gives us a 

response prediction that is similar to the original prediction of Equation 4, but that now incorporates a 
two-element vector. It is a simple matter to generalize this to a larger vector, by using regression on 
multiple variables in Equations 5 and 7, but results are not included in this report. 
 

CHOICE OF A VECTOR 
 
Once the above method has been established for predicting drift, we can proceed to choose an “optimal” 
vector for use in prediction. The general goals to be considered when choosing an IM are efficiency 
(minimum variance in EDP for records with the same IM value), sufficiency (see Luco [9]), and ease of 
calculation (i.e., determining the value of IM for a given record should not be too difficult). As noted 
earlier, in this study we are limiting the choices to Sa(T1) and RT1,T2, and letting T2 vary over all possible 
values. Spectral acceleration values are easy to calculate, and familiar to many engineers, so the ease of 
calculation criterion is met. The scalar IM = Sa(T1) has been found to be a sufficient predictor, and the 
addition of a second element has been found to not render the IM insufficient. So in this paper we focus 
on finding the IM that maximizes efficiency. 
 
The question of efficiency arises when we examine, for example, the estimated mean of lnEDP. We are 
trying to estimate the mean of a population based on a sample from that population. A basic result in 
statistics tells us that the standard deviation of that estimate is equal to ln |EDP IM x nβ = . So if we want to 
gain accuracy in our estimate of the mean, we either need to increase n or decrease ln |EDP IM xβ = . Increasing 
n requires analyzing more records, which can be expensive. Therefore, we would like to decrease 

ln |EDP IM xβ =  (i.e., we would like greater efficiency). This same principle holds in vector case—to increase 
the accuracy of our regression estimate, we need to decrease the standard deviation of the regression 
residuals. For example, in Figure 5 an IM2 with a large residual standard deviation is shown, whereas in 
Figure 6 an IM2 with a small residual standard deviation is displayed. If we are trying to estimate the trend 
in the data, clearly we will be able to do so more accurately using the IM2 from Figure 6. 
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Figure 6: An IM2 with high efficiency 
 

To choose the optimal T2 value at a given Sa(T1) level, we regress on RT1,T2 for a range of T2 values. We 
will then compute the standard deviation of the residuals for each of these regressions. To normalize these 
results, we will compute the fractional reduction in standard deviation relative to the standard deviation 
from the scalar IM case with Sa(T1) alone. If the fractional reduction is zero, then we have gained no 
efficiency by including the given IM2. If the fractional reduction is one, then we have a perfect relation 
between IM2 and EDP, and there is no remaining randomness. We will choose the T2 that has the largest 
fractional reduction among all possible T2 values. 
 

BUILDING MODEL AND GROUND MOTION SELECTION 
 
To perform the analysis as described above, one needs both a structural model and suite of earthquake 
records. The structure used in this study is a reinforced concrete moment frame building. The building has 
1960’s era construction and is serving as a test-bed for PEER research activities [10]. A 2D model of the 
transverse frame created by Jalayer [11] is the model used here. This model contains nonlinear elements 
that degrade in strength and stiffness, in both shear and bending (Pincheira [12]). The frame has seven 
stories and three bays. The first mode of the model has a period of 0.8 seconds, and the second mode has 
a period of 0.28 seconds. 
 
Forty historical earthquake ground motions are used for the analysis. All of the records come from 
California, and the events range in Magnitude from 5.7 to 7.3. The distances vary from 6.5 km to 56 km. 
Attempts were made to avoid directivity effects by choosing records with small distances only when the 
rupture and site geometry suggested that near-fault effects would be unlikely, and velocity histories were 
not observed to contain pulse-like intervals. This set of 40 records was then scaled to 12 levels of Sa(T1) 
between 0.02g and 1.0g. 
 

RESULTS 
 
Using the given structure and ground motions, we can now use the Vector IM methodology to test 
candidate T2 values for RT1,T2. A plot of the fractional reduction in residual standard deviation is shown in 
Figure 7, where all records have been scaled to Sa(T1) = 0.3g. We see that the optimal T2 is one second 
(note, this optimal T2 at this spectral acceleration level was shown in Figure 6 above, and a non-optimal 
T2 was shown in Figure 5). We see that the reduction in dispersion was approximately 60%. We can make 
a comparison of the standard errors of estimation: 



 scalar vector

scalar vectorn n
σ σ

=  (12) 

 
If we can reduce our dispersion by 60%, ( 0.4vector scalarσ σ= ), then 0.16vector scalarn n= . That is, by 
adopting the most efficient vector, we could potentially reduce the number of records used by a factor of 
approximately six and still maintain the same accuracy in our estimate of the mean response of the 
structure. This could lead to a great reduction in computational expense. 

 
Figure 7: Fractional reduction in dispersion vs. T2 for T2 between 0 and 4 seconds for Sa(T1) = 0.3g.  

 
This optimal T2 value is only relevant for a single level of Sa(T1). We repeat this same calculation for two 
additional levels of Sa(T1) and show the results in Figure 8. It is apparent that the optimal T2 value varies 
depending on the level of Sa(T1). An additional value, µ�  is given in the legend. This is the ratio of the 
average EDP among the 40 records to the approximate EDP at yielding (as determined from a pushover 
analysis of the structure). This value is analogous to a ductility level for the structure.  
 
For Sa(T1) = 0.1g, we find that the optimal T2 is 0.36 seconds. This is near 0.28 seconds: the second-mode 
period of the structure. In fact, 0.28 seconds shows a reduction in dispersion that is nearly as large as the 
reduction at 0.36 seconds. If 0.28 seconds were indeed the best T2, then this vector IM would be 
somewhat analogous to the modal analysis method of estimating linear response. The modal analysis 
method (with two modes) would take the spectral acceleration at the first two modes of the building and 
use them to estimate the response of the structure. Note that at this level of spectral acceleration, our 
estimate of ductility is 0.533, implying that for most of the records, the structure stays linear.  
 
For Sa(T1) = 0.3g, we find that the optimal T2 is 1.0 seconds. This is the level that was discussed 
previously. It is noted now that 1.56µ =� , suggesting that most of the records cause some level of 
nonlinear behavior in the structure.  For Sa(T1) = 0.7g, we find that the optimal T2 is 1.5 seconds. At this 
level of spectral acceleration, 4.66µ =� . This suggests that most of the records experience very large 
levels of nonlinearity.  



 
Figure 8: Fractional reduction in dispersion vs. T2 for three levels of Sa(T1). 

 
If one were to combine engineering intuition with the results of Figure 8, the following conclusion might 
be drawn: if Sa(T1) is low enough that few or no records cause nonlinearity, then the optimal second 
period to incorporate would be near the second-mode period of the structure, and if Sa(T1) is large enough 
that most records cause nonlinearities, then the optimal T2 will be larger than T1. The plot of Figure 9 
below shows this pattern as well. In this plot, the level of Sa(T1) is given on the x-axis. On the y-axis is T2, 
plotted as a ratio of T2 to T1. A circle is placed in the plot at the location of the optimal T2 for a given 
Sa(T1). In addition, a line is plotted over the range of T2/T1 where the reduction in dispersion is at least 
75% of the reduction seen at the optimal T2. This line is shown to indicate the breadth of the optimal 
solution (i.e., are there only a few effective T2’s, or is there a large range of T2 that reduces dispersion 
comparably?). Other authors (Cordova [2] and Vamvatsikos [3]) have examined choices of T2, and have 
also recognized the dependence on the level of nonlinearity. 
 
The average µ�  is less than one for Sa(T1) between 0 and 0.1g, and this is where we see an optimal T2 that 
is near to the second-mode period of the building. For Sa(T1) 0.2g (and ≥ 1µ >� ), the optimal T2 is larger 
than T1, and shows an increasing trend as Sa(T1) increases (and as levels of nonlinearity increase). This 
increase in T2 with increasing levels of nonlinearity may be related to the idea of an equivalent linear 
system. The theory is that a nonlinear Single-Degree-Of-Freedom (SDOF) system may be represented by 
an “equivalent” linear system with a longer period. As the level of nonlinearity increases, the period of 
the equivalent linear system increases. A force-deformation diagram of a nonlinear system and its 
equivalent linear system is shown in Figure 10. The original SDOF has elastic stiffness ke, and the 
equivalent linear system has a reduced stiffness k* that is dependant on the ductility demand (µmax) of the 
nonlinear system. Methods for determining an equivalent nonlinear system based on level of ductility 
have been proposed by Iwan [13] and Kennedy [14]. The suggested equivalent periods from these two 
papers are plotted on Figure 9, and they show trends similar to the ideal T2’s seen in this study. However, 
it should be noted that there is a difference between the equivalent linear system, and the IM2 being 
selected for a vector. The equivalent linear system is used to replace Sa(T1), while the IM2 is used to 
supplement Sa(T1). The discrepancy between these two goals is most apparent in Figure 9 when Sa(T1) is 
0.3 or 0.4g. Here, the equivalent nonlinear system has a period almost identical to the elastic period of 
structure. However, the optimal T2 from this study is at a longer period. This is because if T2 is very near 
to T1, then Sa(T1) is very highly correlated with Sa(T2) (see Inoue [15]). Thus, RT1,T2 = Sa(T2)/ Sa(T1) is 
almost always very near to one and so there is little or no predictive ability provided by RT1,T2. The 



optimal T2 must be significantly different than T1 in order to decrease the correlation between Sa(T1) and 
Sa(T2). This can be seen in Figure 8, where the fractional reduction in dispersion is zero or nearly zero for 
T2 values that are very close to T1. So, although the equivalent linear systems somewhat match the optimal 
T2 values at moderate to large levels of ductility, there is a discrepancy between the two at low levels of 
nonlinearity. 
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Figure 9: The optimum second period T2, versus 

the level of Sa(T1). 
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With these results in mind, it is valuable to reconsider our original scheme for determining the optimal 
IM2. We chose to scale records to Sa(T1) first, and then regress on RT1,T2. Therefore, all of our regression 
coefficients were allowed to vary at each Sa(T1) level. This allows for full interaction between Sa(T1) and 
RT1,T2. If we had not scaled the records, and simply regressed on both Sa(T1) and RT1,T2 simultaneously, 
then there would be a need to parameterize the interactions, and this could be a difficult task to do well. In 
addition, had we regressed on both Sa(T1) and RT1,T2 simultaneously without scaling, we would only find a 
single optimal T2 for all Sa(T1) levels, rather than an optimal T2 that varies with the level. These two issues 
were why scaling to Sa(T1) and then regressing on RT1,T2 was chosen as the methodology. It should be 
noted however, that regressing on two IMs simultaneously has been done by Shome [5].  
 
Optimization of the Choice of IM2 Using the Bootstrap and the Drift Hazard Curve 
Another issue with the proposed methodology that should be mentioned is the criterion for choosing an 
optimal RT1,T2. Recall that the quantity being optimized in Figure 7 is the reduction in residual dispersion 
from regression on the non-collapse records only. This quantity does not measure the ability of RT1,T2 to 
predict the probability of collapse. Perhaps if the collapse capacity of the structure is of primary interest, 
the quantity to optimize would be the reduction in residual dispersion from Equation 6. Ideally, the 
quantity to optimize should incorporate the improvements made in prediction of both collapse and non-
collapse records. Because of this issue, the plot of Figure 9 is limited to Sa(T1)  1g. For S≤ a(T1) > 1g, 
more than one-quarter of the records cause the structure to collapse, so it would not be appropriate to 
neglect the collapse records as has been done here. 
 
It is possible to address this issue by computing a weighted sum of the reduction in dispersion from the 
collapse prediction (Equation 6) and the reduction in dispersion from regression on the non-collapse 
records (Equation 7). But the weights used should be a function of the relative importance of collapse and 
non-collapse behavior, and it is not clear what that function should be. The best resolution of this issue is 



to carry the prediction of EDP all the way through to the computation of the mean rate of exceeding an 
EDP value z, as discussed in the introduction. The vector version of Equation 1 is given below: 
  (13) 
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all all 
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This rate is the final result we desire, and this calculation incorporates both the collapse prediction and the 
non-collapse response prediction. Our ultimate goal is to calculate this accurately, so a reduction in 
variability here would be a good criteria to use in selecting RT1,T2. To measure the statistical variability of 
the estimate of λEDP(z), one would employ the bootstrap (Efron [16]). The procedure is as follows: select n 
records with replacement from the original set of n records (some records will be duplicated and others 
will not be present at all). With this new record set and a candidate RT1,T2, use the vector IM to predict the 
building response as outlined above. Using this new estimate, re-compute λEDP(z) using Equation 13. 
Repeat this process N times (no new structural analysis is performed, so N=1000 may not be too 
expensive). The standard deviation of these N values is an estimate of the standard error of estimation of 
λEDP(z). A good T2 value for RT1,T2 will result in a λEDP(z) that has significantly reduced variability as 
compared to the result of Equation 1. There are two advantages introduced by this method. The first is 
that it incorporates gains in efficiency from both the collapse and non-collapse predictions, but rather than 
using a potentially arbitrary weighting scheme, it incorporates them naturally into the final computation 
where the results will be used. The second advantage is that the probability of exceeding a given EDP 
value does not come from a single Sa(T1) level, but from a range of levels. Thus, a good predictor 
according to this criterion will show efficiency gains over the range of Sa(T1) values that contribute 
significantly at the given EDP level. Note that this calculation requires knowledge of vector ground 
motion hazard (the rate of jointly exceeding both Sa(T1) and RT1,T2). This result is available (Bazzurro [17] 
and Somerville [18]), but not yet in widespread use in engineering practice.  
 
As an illustration, the complete drift hazard curve λEDP(z) is computed using the scalar and vector 
procedures (Equations 1 and 13 respectively). The ground motion hazard is calculated for the actual 
location of the structure being studied (a soil site in the Los Angeles area). The vector IM used is {Sa(T1), 
RT1,T2(T2=1.0s)}. The scalar and vector-based curves are shown in Figure 11. Note that the flattening of 
the curve towards the right occurs because the exceedance of these EDP values is dominated by collapses 
(P(collapse) ≅ 3*10-3). There is not a large difference between the two curves, but what is not apparent 
from this picture is that there is much less variability in the curve estimated using the vector IM. To 
measure this variability, we now use the bootstrap. Four example bootstrap replicates of the recordset 
have been generated, and their corresponding vector-IM-based drift hazard curves are shown in Figure 12. 
To display the variability in our estimates, we compute histograms of the λEDP(z) values for a given z, 
using both the vector IM and scalar IM methods. These curves use maximum interstory drift = z as the 
EDP of interest. 
 
We now examine histograms at a value of z of 0.01, to compare our scalar and vector IMs (see Figure 13). 
We see that the results from the vector-based drift hazard curve are much more tightly bunched around 
their central value than the results from the scalar-based drift hazard curve. This means that we can be 
more confident about the value obtained from the vector-based drift hazard calculation. Or equivalently, 
if we adopt the vector-based drift hazard calculation, we do not need to use as many records in the 
analysis to obtain an accuracy comparable to the scalar method. (In this case, we cut the standard 
deviation of the bootstrapped replicates by a factor of about two, so in principle we could reduce the 
number of records used by a factor of about four. However, the method does demand a minimum of 
approximately five to ten records per stripe.) 
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Figure 12: Bootstrap replicates of the vector IM 

drift hazard curve  

 
The histogram of Figure 13 only shows results for one vector IM at a single EDP value, but we can 
extend this calculation to additional candidate vector IMs, and additional values of EDP. Consideration of 
candidate vector IMs is slightly more complicated now, because the vector ground motion hazard 
λIM(x1,x2) needs to be recomputed for each candidate IM. For this reason, the analysis here is limited to 
three vectors that appeared promising in Figure 9: T2 = 0.28s, 1.0s and 2.0s. The coefficient of variation 
of the replicate results is used as a measure of dispersion of the bootstrap replicates (because the mean 
values of λEDP(z) vary by two orders of magnitude depending on z, standard deviations of λEDP(z) are much 
more variable than the coefficient of variation). A plot of the coefficient of variation versus EDP level is 
shown for the three candidate vector IMs in Figure 14, along with the coefficient of variation using the 
scalar IM. We see that the vector {Sa(T1), RT1,T2(T2=1.0s)} produces a significant reduction in coefficient 
of variation for nearly all levels of IM, while the other two vectors do not show a significant 
improvement. This result fits with results seen earlier. We saw in Figure 9 that the vector with T2 = 0.28s 
was only helpful for very small levels of Sa(T1) (and in fact we see that for very small levels of EDP, this 
IM produces a small improvement). The vector with T2 = 2.0s was helpful as Sa(T1) levels got very large, 
but these large-intensity events are rare enough that they do not significantly affect the EDP hazard curve 
except at large levels of EDP (and here we see a slight improvement). The vector with T2 = 1.0s showed a 
significant improvement over a large range of important Sa(T1) levels, and thus it is the most useful. These 
results are consistent with earlier results, but perhaps this method reveals more information about the 
overall usefulness of a candidate vector than the previous method did. Note that to select a vector, we still 
need to specify a value of z to consider. But this choice of z may not be too hard if we are concerned with 
specific limit states (e.g. collapse, or EDP = 1% drift). 
 
This bootstrap procedure requires more computation than the regression procedure. However, it has 
distinct advantages in that it directly measures uncertainty in the value of interest (λEDP(z)), and it 
incorporates estimates from both collapse and non-collapse prediction at many IM levels simultaneously. 
We saw from the example calculation above that the results from the two procedures appears consistent.  
Research to date seems to show that the two alternative techniques agree at levels of EDP where collapses 
are not frequent.  
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Figure 13: Histograms of the scalar and vector 

drift hazard curves, for z = 0.01. 
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CONCLUSIONS 

 
A method for selecting an efficient vector intensity measure using regression analysis has been presented. 
This method is based on scaling to the first IM element (Sa(T1)) and then using regression on the second 
element (RT1,T2) to predict the response of the structure. The optimal second period (T2) for use in the 
vector was chosen by maximizing the reduction in standard deviation of the prediction errors. It was 
shown that the proper choice of RT1,T2 can significantly reduce prediction error when compared to 
prediction using Sa(T1) alone. For the structure considered here, the optimal second period for use in RT1,T2 
was shown to be approximately equal to the second-mode period of the building when the building 
response was linear. When Sa(T1) was large enough to cause nonlinear behavior, the optimal second 
period was larger than the first-mode period of the building, and increased as the average level of ductility 
increased. This increase appears to be related to the effective period of an equivalent linear system. 
 
An additional method for evaluating vector IMs that utilizes bootstrap replications of the drift hazard 
curve is also presented. This method has the advantage of directly computing the statistical variability in 
estimates of the drift hazard curve, and it accounts for the increased prediction accuracy of both collapse 
and non-collapse cases at many IM levels simultaneously. The disadvantage of this method is the 
requirement of a vector ground motion hazard for each candidate IM, and increased overall computational 
time. Because of this, it is suggested that the regression analysis method be used to narrow down a broad 
range of potential vector IMs to a few promising candidates. The bootstrap method can then be used to 
examine these few in detail.  
 
A vector intensity measure has the potential to produce a drift hazard curve with much narrower 
confidence bands than the equivalent curve computed with the scalar intensity measure Sa(T1) and the 
same number of nonlinear analyses. Analysis of the structure evaluated in this paper shows the potential 
for a reduction in the standard deviation of λEDP(z) of as much as a factor of two. This implies that in 
principle the required number of analyses could be reduced by a factor of as much as four without 
increasing the standard deviation of the λEDP(z) result. This decrease in computational expense is very 
appealing, and may justify the use of the vector intensity measure. 
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